Exact converses to a reverse AM-GM inequality, with applications to sums of independent random variables and (super)martingales
نویسندگان
چکیده
For every given real value of the ratio $\mu:=A_X/G_X>1$ arithmetic and geometric means a positive random variable $X$ $v>0$, exact upper bounds on right- left-tail probabilities $\mathsf{P}(X/G_X\ge v)$ $\mathsf{P}(X/G_X\le are obtained, in terms $\mu$ $v$. In particular, these imply that $X/G_X\to1$ probability as $A_X/G_X\downarrow1$. Such result may be viewed converse to reverse Jensen inequality for strictly concave function $f=\ln$, whereas well-known Cantelli Chebyshev inequalities converses quadratic $f(x) \equiv -x^2$. As applications mentioned new results, improvements Markov, Bernstein--Chernoff, sub-Gaussian, Bennett--Hoeffding given.
منابع مشابه
a comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولA Comparison Inequality for Sums of Independent Random Variables∗
We give a comparison inequality that allows one to estimate the tail probabilities of sums of independent Banach space valued random variables in terms of those of independent identically distributed random variables. More precisely, let X1, . . . , Xn be independent Banach-valued random variables. Let I be a random variable independent of X1, . . . , Xn and uniformly distributed over {1, . . ....
متن کاملExact inequalities for sums of asymmetric random variables, with applications
Let BS1, . . . ,BSn be independent identically distributed random variables each having the standardized Bernoulli distribution with parameter p ∈ (0, 1). Let m∗(p) := (1 + p+ 2 p2)/(2 √ p − p2 +4 p2) if 0 < p 6 1 2 and m∗(p) := 1 if 1 2 6 p < 1. Let m > m∗(p). Let f be such a function that f and f ′′ are nondecreasing and convex. Then it is proved that for all nonnegative numbers c1, . . . , c...
متن کاملa comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولEstimating Sums of Independent Random Variables
The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set of independent nonnegative random variables with expectations equal to 1, is it true that P ( ∑n i=1 Xi < n + 1) > 1 e ? He proved that P ( ∑n i=1Xi < n + 1) > 1 13 . In this paper we prove that infimum of the P ( ∑n i=1Xi < n + 1) can be achieved when all random variables have only two possible values, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2021
ISSN: ['1331-4343', '1848-9966']
DOI: https://doi.org/10.7153/mia-2021-24-40